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Reversal of secondary flow in non-Newtonian fluids 
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A study is made of the steady radial-axial flow generated in a non-Newtonian fluid 
confined between two infinite parallel planes by torsional oscillations of one of the 
planes. Canonical equations of motion appropriate for the small amplitude motion 
of a simple fluid are used. It is shown that under certain circumstances the direction 
of the radial-axial flow is opposite to that in a Newtonian fluid. 

1. Introduction 
Consider a fluid occupying the region between two infinite, parallel, rigid plane 

boundaries. Suppose that one of the planes performs small amplitude torsional 
oscillations about an axis normal to itself, while the other plane remains at  rest. 
Clearly the motion of the boundary will induce flow of the fluid; the aim of this paper 
is to examine the nature of this flow. 

In  the case of a Newtonian fluid the problem was studied by Rosenblat (1959). It 
was shown that to first order in the amplitude the flow is purely azimuthal and has 
essentially the structure of a Stokes layer in which the velocity decays exponentially 
with distance from the boundary. At second order there is a radial-axial motion of the 
fluid, consisting of a steady component and a periodic component of twice the frequency 
of the forced oscillations. This secondary flow is generated primarily by centrifugal 
forces; the steady radial-axial movement is radially outward near the oscillating plane 
and radially inward near the stationary plane. 

A number of authors subsequently considered generalizations of the problem to the 
case where the fluid was non-Newtonian. Thus Bhatnagar & Rajeswari (1962) and 
Srivastava (1963) obtained solutions for fluids which obey a second-order Rivlin- 
Ericksen constitutive equation, while Frater (1 964) studied an elastico-viscous fluid 
satisfying an Oldroyd-type constitutive equation. These authors showed that the 
general flow structure described above (first-order azimuthal flow, second-order radial- 
axial flow) was present in each of their non-Newtonian fluid models. An interesting 
effect noticed by Bhatnagar & Rajeswari (1962) and by Frater (1964) was that in 
certain circumstances the direction of the steady component of the radial-axial flow 
was reversed by comparison with that in a Newtonian fluid. 

Reversal of the direction of secondary flow is regarded as being one of the phenomena 
which characterize non-Newtonian behaviour in fluids (cf. Bird 1976). There are 
several reports in the literature of observations of secondary-flow reversal when the 
primary (azimuthal) flow is time independent. A particularly interesting account of 
recent experiments is given by Hill (1972), and a theoretical analysis of these experi- 
ments has been provided by Kramer & Johnson (1972). Both the theory and the 



388 8. Rosenblat 

experiments reported in these papers relate to a fluid contained in a circular cylinder, 
with its upper surface in contact with a steadily rotating disk. Thus the work of these 
authors concerns a geometrical configuration which is similar to ours except that the 
fluid in their case is bounded laterally rather than being of infinite extent. We shall 
see below that the lateral boundary makes an important difference to the behaviour 
of the flow. 

Recently Chang & Schowalter (1974) have described experiments on acoustic 
streaming induced by the small oscillations of a cylinder in a viscoelastic fluid. They 
have observed that the direction of the steady streaming is opposite to that in a 
Newtonian fluid. These experiments are particularly interesting from our present point 
of view, since there is a well-known analogy between acoustic streaming and steady 
radial-axial motion generated by torsional oscillations. 

In  this paper we shall consider the problem described at the beginning of this section 
for a general simple fluid undergoing motions of small amplitude. The constitutive 
equations, derived originally by Coleman & No11 (1961)) are essentially the equations 
of second-order viscoelasticity. They can be shown to be valid for every simple fluid 
with fading memory whose defining functional is sufficiently smooth and whose motion 
is such that the history tensor is small in norm. The explicit equations of motion are 
presented in $ 2 ,  and the solution is obtained and discussed in $5 3-5. 

Our work differs from that of Bhatnagar & Rajeswari (1962) and Frater (1964) in 
several respects. First, we use different constitutive equations, which we believe to be 
of greater generality. In  particular, the use of the second-order Rivlin-Erickson model 
to describe time-dependent flows is now considered to be of doubtful validity in view 
of the fact that the rest state of such a fluid can be unstable (Craik 1968). Second) there 
is a discrepancy between the conclusions of Bhatnagar & Rajeswari (1962) and Frater 
(1964). The former authors find that flow reversal will always occur at  sufficiently high 
frequency, while Frater ( 1964) obtains flow reversal only a t  intermediate frequencies. 
Our own conclusions are somewhat a t  variance with both of these; we feel, however, 
that our results are amenable to simple experimental verification. We give, moreover, 
a more detailed description of how flow reversal occurs than has been given in either 
of the papers cited. 

2. Equations of motion 
In  this section we shall set out the equations governing the small amplitude time- 

dependent motions of a class of incompressible simple fluids. Our constitutive equations 
will apply to simple fluids whose defining functional possesses a certain smoothness 
property; in particular they will be appropriate for so-called simple fluids of integral 
type (Truesdell & No11 1965, p. 98). 

Let x be the position vector of a material point X at time t (which is regarded as 
being the present time). Let g* be the position vector of X at time r < t. We introduce 
the variable s defined by 7 = t - s and express the relationship between g* and x 
through the formula 

g* = g*(s) = g*(x, t ;  t - S ) )  (2.1) 

so that x = g* ( t )  = g*(x, t ;  t ) .  (2.2) 

dg*/ds = - v*(X*, t - s) (2.3) 

Let v* denote the velocity of the point X .  Then we have that 
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is the differential equation of the pathlines, and is subject to the initial condition 

5* = x  when s =  0. (2.4) 

(2.5) 

Evidently this has the property that F(0) = I ,  where I is the unit tensor. From (2.5) we 
are able to define the history tensor G*(s) by means of the formula 

We define the tensor F(s) by the relation 

F(s) = F(x,t;  t - 8 )  = VE,*(S) = VE,*(x,t; t -s ) .  

G*(s) = G*(x, t ;  t - S )  = FT(s).F(s)-l, G*(O) = 0. (2.6) 

The constitutive equation for an incompressible simple fluid is taken in the form 

m 

s = o  
T+pI = S* = .F (G*(s)), 

where T = T(x, t )  is the stress, p = p(x, t )  is the pressure, S* = S*(x, t )  is the extra 
stress and F is a tensor-valued functional defined on a prescribed set of histories G*. 
This functional must satisfy an isotropy relation (Truesdell & No11 1965, p. 78), and 
has the property that 9 (0) = 0. 

Now let E be a small parameter, real and positive. I n  the general theory e is a measure 
of the departure from the rest state of the fluid, uniformly in space and time; in the 
present situation it is understood to be a dimensionless amplitude of oscillation of the 
boundary. We expand the velocity field in the form 

v*(X, t )  = €v(x, t ,  €1 = €v1(x,  t )  fe2v,(X, t )  + 0 ( € 3 )  

g y S )  = x + eg(s, €1 = x + Eg1(S) + E z g z ( s )  + o ( E 3 ) .  

G*(s) = eG(s, E )  = eGl(s) +E~G,(S)  + 0 ( e 3 ) ,  

Gl(s) = Gl(x,t;  t - 8 )  = Vgl ( s )+ (VEl ( s ) )T  

G,(s) = Gz(x, t ;  t - 8 )  = V%z(s) + ( V U S ) ) ~  + ( V ~ ~ ( S ) ) ~ - V S ~ ( S ) .  

(2.8) 

(2.9) 

(2.10) 

and introduce the vector E, = g(s, e) = g(x, t ;  t - s ;  e) defined by 

Similarly we write 

and it can be shown by reasonably direct computation that 

(2.11) 

(2.12) and 

The corresponding expansion for the constitutive relation (2.7) can be obtained for 
a general functional 9 which satisfies certain smoothness conditions. The precise 
requirements on 2F are to be found in Coleman & No11 (1961) and the detailed steps of 
the expansion procedure are set out in Joseph (1976,,chap. 13). We confine ourselves 
therefore to a statement of the results, which are as follows. If the extra-stress tensor 
S* is expanded in the form 

s* = e~ = esl + E z s ,  + 0 ( € 3 ) ,  (2.13) 
then it can be shown that 

(2.14) 
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where we have introduced the notation 

C,(s) = Ci(x, t - s) = Vv,(x, t - s) + (Vvi(x, t - s))T, i = 1,2.  (2.16) 

The functions [(s) and y(s,, 8,) are material functions; the former is the stress relaxation 
modulus and the latter has the property that y(sl, s,) = y(s2, 8,). 

Equation (2.14) is recognizable as the constitutive equation of linear viscoelasticity. 
Equation (2.15) represents a second-order viscoelastic effect, and was apparently first 
obtained in this form by Joseph (1976). It is fairly easy to show that for steady motions 
(2.13)-(2.16) reduce to the constitutive equations for a second-order Rivlin-Ericksen 
fluid. The Rivlin-Eriksen material constants, denoted by po, a, and a,, can be shown 
to be related to the material functions 5 and y by the formulae 

I (2.17) 

In  the absence of body forces the motion of the fluid is governed by the dynamical 

(2.18) p(av*/at +v*. vv*) = - vp* + v . s*, equations 

where p is the density, together with the continuity equation 

v.v* = 0. (2.19) 

We substitute into these equations the expansions (2.8) and (2.13) for V* and S* 
respectively, and a similar expansion for p*.  Equating coefficients of like powers of 8 

we obtain the following system: 

p&,/at = -vp,+v.s,, v .v ,  = 0, (2.20) 

(2.21) P(avllat + v,. vv,) = - vp2 + v.  s,, v. V, = 0. 

These are the governing equations for the problem considered in this paper, with S, and 
S, given by (2.14) and (2.15) respectively. 

3. The first-order flow 
Take cylindrical polar co-ordinates ( r ,  8, z )  and let the corresponding unit vectors 

be F, 6, 2. Let the fluid occupy the region between rigid planes located a t  z = 0 and 
z = d. We consider the flow generated by torsional oscillations of the plane z = 0 about 
the axis r = 0, while the plane z = d remains at rest. In  the notation of $ 2  we wish to 
find a solution to (2.18) and (2.19) subject to the boundary conditions 

v * = ~ r c o s ~ t 6  on z = O ,  v*=O on z = d .  (3.1) 

Here the parameter E has the dimensions of angular velocity. 

problems : 
It is easy to see that the problem reduces to the solution in sequence of the following 

(i) the system (2.20), with S, given by (2.14), subject to the boundary conditions 

v , = r c o s w t 6  on z =  0, v ,=O on z = d ;  (3.2) 
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(ii) the system (2.21), with S2 given by (2.15), subject to the boundary conditions 

v 2 = 0  on z = O ,  v , = O  on z = d .  (3.3) 

I n  this section we consider the first-order problem. We note from (2.16) that 

v . c ,  = mi, i = 1,2; 

hence (2.20) and (2.14) reduce to the system 

/om 

av, 
at p- = - Vp, + y(s) v2vi as, v.  v, = 0. 

A solution compatible with the boundary conditions (3.2) is 

v1 = r Re { $ ( z )  eiwt} 6, p 1  = 0, 

provided that $ ( z )  satisfies the boundary-value problem 

d2$/dz2- (iop/,u)$ = 0, $ ( O )  = 1, $(a) = 0, 

where p (sometimes called the complex viscosity) is defined by the formula 

,u = p(o)  = JOm~(s)e-~usds. 

The solut,ion of (3.7) is sinh $Q( 1 - z /d)  
= sinh $a 

where SZ = (4ipwd2/p)* 

may be regarded as a dimensionless (complex) frequency parameter. Hence we have 
the first-order flow field 

sinh $SZ( 1 - z /d)  eio,t 
v1 = rRe( 

sinh $Q 
(3.11) 

which is a well-known result. 
We calculate the components of the stress tensor S,. From (3.6) we have that 

V, = Re ($ e i w t )  (6P - P6) + r Re ($’ eiwt) 62, (3.12) 

where $’ = d$/dz; on substituting this expression into (2.16) we obtain 

C,(s) = r Re {$’ eiw(t-s)} (62 + 26). (3.13) 

Equations (2.14) and (3.13) now give 

S, = rRe{,u$’eiwt}(&+~6). (3.14) 

The values of the shearing stresses a t  the bounding planes can be found by setting 
z = 0 and z = d respectively in (3.14). 

4. The second-order flow 

duce complex-conjugate notation, and to write (3.13) in the form 
We turn now to the calculation of the second-order flow. It is convenient to intro- 

C,(s) = +r{$’ exp [iw(t - s ) ]  + 7‘ exp [ - iw(t - s ) ] }  (62 + $6). (4.1) 
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From this we obtain 

C,(sl). C1(s2) = $r2{$'2 exp [iw(2t - s1 - s,)] + $'2 exp [ - iw(2t - s1 - s,)] 
+ 2$'$' cos w(sl - s,)} (66 + $5). (4.2) 

Next we have from (3.6) and integration of (2.3) 

&(x, t ;  t - s) = - r Re $ ( z )  exp [iw(t - s')] ds' 6 

From this formula and (4.1) we can compute the following result: 

(&.V)  C l + C , . V ~ l + ( V ~ r ) T . C 1  = ( i r 2 / 2 ~ ) { ~ ' 2 e x p [ i w ( 2 t - s ) ]  ( 1  - e - 9  
- 

- $', exp [ - iw(2t - s)] ( 1  - e i w s )  + 2i$'$'sin u s }  44. (4.4) 

It is evident from the forms of (4.2) and (4.4) that the second-order flow will comprise 

(4.5) 

(4.6) 

(4.7) 

a steady component and a second-harmonic component. Thus we set 

v,(x, t )  = v',O)(x) + &[~',~)(x) e 2 f w t  + Ti2)(x) e-ziwt I, 
p2(x, t )  = p',O)(x) + +[piz)(x) e z i w t  + ijLz)(x) e - z i w t  1 
S,(X, t )  = s',O)(X) + i[s',z)(x) e z i w t  + Si2)(x) e - z i w t ] .  and 

From (2.15) ,(2.16), (4.2) and (4.4) we can write down the explicit form of the steady 
part of S,. We find that 

S',O)(x) = p0[Vv',O) + (Vv&O))T] +Pl(r2$'$') 46 + &p,(r,$'$') (66 + 44), (4.8) 

where po (the Newtonian viscosity) is given by (2.17), and where we have defined 

sin ws 
w (4.9) 

and 

Clearly as w-f 0 the parameters p1 and p2 reduce to the Rivlin-Eriksen constants a1 
and a, respectively. 

I n  a similar way it is possible to write down the second-harmonic contribution to S,, 
but we shall not pursue the details here. 

We can now state explicitly the equations and boundary conditions for the second- 
order fields. From (3.6) we have that 

- 
v,.VV, = - g r ( ~ z e z i w t + $ , e - , i " t + 2 ~ ~ ) P .  (4.11) 

Hence on substituting from (4.8) and (4.11) into (2.21), we obtain for the steady field 
the equations 

- &pr$$P = - Vp~o)+poV2v&o)+ (pl+ &pz) rZd(#'$')/dx$ - ip,r$'$'P (4.12) 

and 
with the boundary conditions 

v . v&"' = 0 

via) = 0 on z = 0,d. 

(4.13) 

(4.14) 
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The system admits the representation of the flow field 

vk0) = u(r, z )  9 + w(r, z )  2, pk0) = p(r ,  z) ,  

whereupon (4.12)-(4.14) become 

au u aw -+-+- = 0, 
ar r a x  
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(4.15) 

(4.16) 

(4.17) 

(4.18) 

u = w = O  on z = O , d .  (4.19) 

The system of equations (4.16)-(4.19) admits a solution of the form 

w(r, z )  = - 2f(z), p(r ,  z )  = r2g(z) + h(z) UP, 2) = rf'(z), (4.20) 

provided that the functions f, g and h satisfy the equations 

Pof I/' = 2g - *P@ + 4 / 3 2  $'F, 

0 = 9' - CPl + iP2)  d(+'F)/dz 

- 2pof" = h', 

and the boundary conditions 

f = f ' = O  on z = O , d .  

(4.21) 

(4.22) 

(4.23) 

(4.24) 

The pressure functions g(z) and h(z) can be determined from (4.22) and (4.23) to 
within constants of integration kl and k2:  

and 

(4.25) 

(4.26) 

Substituting from (4.25) into (4.21) we obtain 

Po7 = kl + (%+ 9 / 9 2 )  Y$' - w 7 -  (4.27) 

From (3.9) we find that 

and 

(4.28) 

(4.29) 

where we have set Q, = ReQ, Ri = ImQ, ?,I = z/d. (4.30) 

Equations (4.27) and (4.24) now take the form 

( ~ o / d ) ~  fTTT = k1 + A  cash a,( 1 - 7) + B cos Qi( 1 - q),\ 

f = f , = O  on q = O , l ,  1 (4.31) 
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where 

and 

(4.32) 

(4.33) 

The solution of (4.31) is found to be 

sin R 
(1 - 37) (1 -7) cos Qi+ 67( 1 - v)-~ - cos R,(1-7) -7(2 - 37) 

Qi 

(4.34) 

(4.35) 
6A 6B 

with El = 3 { - 0, cosh Q, + 2 sinh SZ, - a,} +-3 {Ri cos SZi - 2 sin Ri + Qi}. 
Q i  

Equation (4.34) gives the radial component of the time-independent flow velocity; 
the corresponding axial component can be obtained by integration of (4.34), but we 
shall not write it down here. For future reference, however, we note that differentiation 
of (4.34) gives 

I sin R .  - (4 - 67) cos a,+ (6-  127); - aisin ai(1 -7) - 2 + 67 , 
Q i  

(4.36) 
which is proportional to the steady component of shear stress in the fluid. 

5. Flow reversal 
In  a Newtonian fluid the steady radial-axial flow is driven by centrifugal effects. 

This flow is therefore radially outward near the oscillating boundary and, by con- 
tinuity, radially inward near the stationary boundary. The radial velocity changes 
sign exactly once in the interval 0 < 7 < 1. Axial motion is towards the moving 
boundary and does not come to rest for any value of 7 in 0 < 7 < 1, although this 
can happen when both planes oscillate (cf. Rosenblat 1960). 

For the sake of completeness, and with a view to later comparison with non- 
Newtonian behaviour, we shall verify the above statements on the basis of the results 
obtained in the preceding section. When the fluid is Newtonian, we have 

p = Po, P I  = $2 = 0, (5.1) 

SZ = (4ipwd2/p0)4 = A( 1 + i), say, (5.2) 

and - A  = B = p/2(cosh A - cos A) > 0 when A > 0. (5.3) 

Equation (4.36) can now be written in the form 

H ( 7 )  = (,uoA2/Bd3)f,, = A[sinh A( 1 - 7) -sin A( 1 - 7)] - (4 - 67) (cosh A + cos A) 

+(6-127)(sinhA+sinA)/R-4+ 127. (5.4) 
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From this we see that 

(sinh A + sin A) 
A - 4  H ( 0 )  = A(sinhA-sinA)-4(coshA+cosA)+6 

* (2n-  2 )  (2n-  1 )  [1+ ( -  l)n] 
AZn > 0 when A > 0. 

(2n+1)! = x  
n = l  
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(5 .5 )  

Hence f,,,,(O) > 0, which means that in the neighbourhood of the oscillating plane 
7 = 0 the radial flow is always outwards from the axis. Similarly 

(sinh A + sin A) 
A + 8  H (  1) = ~ ( C O S ~  A + COB A) - 6 

This implies that f,,,,(l) > 0, so that the flow is always radially inward near the 
stationary plane 7 = 1. Hence it follows that the radial velocity component changes 
sign at least once in the interior between the boundaries. 

On the other hand we see from (5.4) that H'(7)  = 0 if and only if 

A%[cosh A( 1 - 7) - cos A( 1 - 7)] = 6(cosh A + cos A) + 12(sinh A - sin A - A)/& (5.7) 

It is easy to show that the left-hand side of (5.7) is a strictly monotonic function of 7. 
Hence for each A > 0 there can be at  most one value of a t  which H'(q)  = 0; that is, at  
most one stationary point of H ( y ) ,  and therefore at most one point where the radial 
velocity component changes sign. These arguments combine to verify that the radial 
velocity has just one change of sign in the interior between the planes. 

We turn now to the non-Newtonian case, and begin by considering the behaviour 
of the flow at very small frequencies. In  the limit w + 0 we have that 

and 

It follows that, to leading order, 

- A  z B z p/A2. (5.10) 

Substituting into (4.34) we find for the radial velocity component 

( ~ ~ / d ~ ) f , ,  = & P T ( ~ -  7)  (6 - 157 + 5v2) ,  (5.11) 

in which the material constants a, and a2 do not appear. Thus (5.11) has the same 
structure as the Newtonian flow field, and there is no flow reversal in the low-frequency 
limit. 

It is not difficult to confirm that (5.11) also represents the secondary radial flow which 
occurs when the plane q = 0 rotates steadily about its axiswith small angular velocity. 
In  other words, the zero-frequency limit is the solution for steady rotation. Since (5.11) 
displays no reversal of the direction of the flow we have the important conclusion that 
flow reversal, if it  takes place, is a consequence of the time dependence of the primary 
flow. 
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At first sight it might appear that this conclusion contradicts the calculations of 
Kramer & Johnson (1972), who find reversal of the radial flow when the primary 
azimuthal flow is time independent. However, Kramer & Johnson compute a solution 
for a fluid confined within a cylinder of finite radius, and it is the presence of the lateral 
boundary which explains the apparent discrepancy. In  fact Kramer & Johnson (1972, 
p. 21 1) indicate that, if all other quantities are held fixed, flow reversal does not occur 
unless the cylinder radius is sufficiently small. This establishes a consistency between 
their results and ours, since the latter relate in effect to a cylinder of infinite radius. 

We consider next the case of very large frequency. Standard methods can be used to 
compute asymptotic approximations to various quantities in the limit w -f co. Thus, 
integrating (3.8) by parts, we find 

r" = [ (O)/ iw + O(w-2). 
Hence (3.10) becomes 

(5.12) 

= (4ipwd2)* [g(O)/iw + O ( U - ~ ) ] - ~  = 2iwd(p/C(O))4 [1+ O(W-')], (5.13) 

which implies that R, = O ( l ) ,  Qi = O ( w )  as w-fco .  (5.14) 

Integrating (4.9) by parts we obtain 

p1 = ---2 C(0) f o(w-3) ,  
p2 = w 2 y ( 0 ,  0) + O(0-3). 

(5.15) 

(5.16) and similarly (4.10) gives 

Substituting (5.12), (5.15) and (5.16) into (4.32) and (4.33) we find 

and 

(5.17) 

(5.18) 

These formulae, together with the estimates (5.14), show that the second term in 
(4.36) is small compared with the first term as w-too.  Thus (4.36) can be written in the 

(5.19) 
form 

(rUo/d3)f,, = - A  U(7)  + O(w-l), 

where A is now given by (5.17) and 

U ( 7 )  = R;2{(6y-4)coshQ,+(6- 127)sinh(R,)/sl,+Q,sinh(l -7)-2+67}. (5.20) 

Now U (  0) = Rr2{ - 4 cosh Q, + 6 sinh ( R,)/Q, + R, sinh R, - 2 )  

O0 (n - 1)  (2n - 1) ar2n-2 
= 2 c  > 0 when Q , #  0; 

n=l  (2n- l )!  
(5.21) 

similarly U(  I )  = ~?R;~{cosh R, - 3 sinh (Q,)/Q, + 2} 

(n-1)Qf"-2 
= 4  2 > 0 when R,# 0. 

n = l  (2n+1)!  
(5.22) 

Also, we have from (5.20) that 

U'(7)  = R2,2{6 cosh Q, - 12 sinh (R,)/Q, - Qf cosh R,( 1 -7) + 6}, (5.23) 

and it is again the case that U'(7)  = 0 a t  just one point in the interval 0 < 7 < 1. 
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These results imply that the direction of the radial flow is determined completely by 
the sign of A .  When A < 0, f,,,(O) > 0, fqq(  1)  > 0 and the flow has the same direction as 
for a Newtonian fluid. When A > 0, f,,(O) < 0, f,,,(l) < 0 and the whole flow field is 
in the opposite direction. We see now from (5.17) that flow reversal will occur a t  very 
high frequencies in and only in materials for which 

Y(0,O) > g L W .  (5.24) 

This result appears to be somewhat a t  variance with the conclusions of Bhatnagar & 
Rajeswari (1962) and Frater (1964). The calculations performed by the former authors 
suggest that flow reversal always occurs at very high frequencies, while Frater found 
that the radial flow is anti-Newtonian a t  intermediate frequencies but reverts to being 
Newtonian in the large-frequency limit. We presume that the discrepancies are due to 
the different constitutive equations used. 

We proceed now to examine the characteristics of the flow for the whole range of 
frequencies. I n  the general case it is convenient to write (4.36) in the form 

( r ~ ~ / d ~ ) f , ,  = - A U ( r ) + B V ( r ) ,  (5.25) 

where U'(7) is defined by (5.20), A and B by (4.32) and (4.33), and V ( 7 )  by the formula 

V ( 7 )  = Ri2{ - (4 - 67) cos R, + (6 - 127) sin (R,)/R, - n, sin R,( 1-7) - 2 + 67}. (5.26) 

Using these formulae we define 

and 

(5.27) 

(5.28) 

where M E  (4Pi+3Pd@/lrUl. (5.29) 

Evidently Q o = O 7  Qi = O  (5.30) 

are respectively the conditions that the flow changes direction in the neighbourhood 
of the plane 7 = 0 and the plane 7 = 1.  The flow is Newtonian when Qo > 0 and Q1 > 0 
and anti-Newtonian when the inequalities are reversed. 

For a given fluid (5.27)-(5.30) may be regarded as equations that determine the 
frequencies a t  which flow reversal occurs near the respective boundaries. It is of course 
not possible to solve these equations without providing details of the material func- 
tions p, PI and P2. 

We have already seen that the flow is in the Newtonian direction at very low fre- 
quencies. As the frequency increases from zero various possibilities arise: the flow 
may not reverse direction for any value of the frequency, or it may reverse direction 
throughout the whole fluid a t  some frequency, or it may change direction near one 
of the boundaries only. I n  the last case, if reversal is a t  the stationary plane, there will 
be radial ouflow near both boundaries and a compensating inflow in the interior. If 
the reversal is a t  the oscillating boundary, there will be radial inflow near both 
boundaries and radial outflow in the interior. As the frequency is increased still further, 
reversal may take place at the other plane, and then the whole flow pattern will be 
anti-Newtonian. Moreover, since (5.30) are transcendental equations it is conceivable 
that many flow reversals can occur, in various regions of the fluid, as the frequency 
changes. 
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To gain some insight into possible behaviour we shall examine in detail the solution 
for specific forms of p, p1 and p2. We choose the simplest Maxwell-type approximation 
for the material function c(s), namely 

= -(Pi/%) exp (rUoS/%) (011 < O)? (5.31) 

which is consistent with (2.17). It is convenient to introduce a Deborah number 0, the 
ratio of the relaxation time of the material to the period of the forced oscillation, 

8 = - W O I ~ / , U ~ .  (5.32) defined by 

Then substituting (5.31) and (5.32) into (3.8) and (4.9) respectively we obtain 

r” = PO/P + w (5.33) 

and p1 = al/( 1 + 8’). (5.34) 

(5.35) 

and x = 4 tan-l8 +an. (5.37) 

We note also that (3.10) now gives 

R, = q05( 1 + cos x, 52, = qBb( 1 + tI2)4 sin x, 
where q = ( -  4pd2/a1)* (5.36) 

For the material function y(sl, s2) we assume a one-term approximate form analogous 
to (5.31), namely (5.38) 

This satisfies the condition (2.17) for any 9 > 0 ;  hence 9 is a free constant which is 
a material property. Substituting (5.38) into (4.10) we obtain 

where 

(5.39) 

(5.40) 

The solution of (5.30) is in effect a four-parameter problem, the parameters being 

h = -a2/a1. (5.41) 8, q, and A,  where 

Of these only 8 incorporates the frequency and may therefore be regarded as a measure 
of the latter; q has the form of a Reynolds number, while ~2 and h are strictly material 
parameters. The functions U and V appearing in (5.27) and (5.28) depend only on 0 
and q, while M ,  defined by (5.29), can now be written as 

(5.42) 

and is independent of q. 

model by the condition 

this can be seen, for example, from (5.33), (5.43) and (5.39). We expect that no flow 
reversal will take place when (5.43) holds. On the other hand, the high-frequency limit 
contained in the inequality (5.24) now takes the form 

The low-frequency limit discussed earlier in this section is represented in the present 

0 <  1; (5.43) 

h K 2  > g. (5.44) 

We expect that flow reversal can take place at  high frequencies only if (5.44) holds. 
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FIGURE 1. Points of flow reversal at  moving and stationary boundaries. 
6 as a function of K ~ ,  with q = 1.0 and h = 1.5. 

Computations have been performed to discover if and when the quantities Q,, and Qr 
change sign; after testing over a considerable range of values of all four parameters, 
we have been able to arrive a t  the following verifications of the low- and high-frequency 
conditions (5.43) and (5.44): 

(i) Flow reversal does not occur for any q, h or /c2 if (5.43) holds. 
(ii) Flow reversal does not occur for any q, A, K~ or t!? unless (5.44) holds. In  particular 

this shows that the high-frequency condition (5.44) is actually a universal condition. 
Notice that if the stress-strain relation for the fluid is linear (a2 = 0) there can be no 
flow reversal 

Our calculations for the model under consideration have also revealed the following 
features : 

(iii) Given (5.43) and (5.44), reversal of the flow always take place once and only 
once at  each boundary as 8 changes with the other parameters held fixed. 

(iv) Typically flow reversal takes place first (in the sense oft!? increasing) at  the 
moving boundary, and then at  the stationary boundary. As mentioned earlier, this 
means that there is a range of frequencies for which there is radial inflow near both 
boundaries, and radial outflow in the interior. It appears, however, that the larger the 
value of h/c2, the closer to simultaneity is the reversal of the flow direction at the two 
boundaries. 

These characteristics are illustrated in figure 1, which shows the values of t!? at which 
flow reversal occurs as a function of K2, for fixed q and A. For this particular computa- 
tion we have taken q = 1-0 and h = 1.5. The parameter q depends on the distance 
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between the planes, and therefore can be adjusted more or less a t  will. The value 
A = 1-5 is not untypical for materials such as S.T.P. 

If one takes the view that the material parameters ,uo, a1 and ct2 are known from 
steady-flow experiments, the two values of 0 at which the flow reverses at the 
boundaries can be regarded as determining the remaining parameter 8 and testing 
the validity of the Maxwell-type model. Unfortunately there do not appear to be any 
observations of flow reversal in a time-periodic situation, other than those of Chang & 
Schowalter (1974)) which are for a different configuration. 
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